
iceTEA: Tools for plotting and analysing cosmogenic-nuclide surface-

exposure data from former ice margins 

 

R.S. Jones a*, D. Small a, N. Cahill b, M.J. Bentley a, P.L. Whitehouse a 

a Department of Geography, Durham University, South Road, Durham, UK. 

b School of Mathematics and Statistics, University College Dublin, Belfield, Dublin, Ireland. 

* Corresponding author: richard.s.jones@durham.ac.uk 

 

Abstract 

Cosmogenic-nuclide surface-exposure data provide important constraints on the 

thickness, extent and behaviour of ice masses in the geological past. A number of online 

calculators provide the cosmogenic nuclide community with a means of easily calculating 

surface-exposure ages. Here we provide a platform for plotting and analysing such data. This 

paper describes a suite of freely accessible numerical tools for visualising, evaluating and 

correcting surface-exposure data that are used to reconstruct past glacier and ice sheet 

geometries. 

iceTEA (Tools for Exposure Ages) is available as an online interface (http://ice-tea.org) 

and as MATLAB© code. There are 8 tools, which provide the following functionality: 1) 

calculate exposure ages from 10Be and 26Al data, 2) plot exposure ages as kernel density 

estimates and as a horizontal or vertical transect, 3) identify and remove outliers within a 

dataset, 4) plot nuclide concentrations on a two-isotope diagram and as a function of depth, 5) 

correct exposure ages for cover of the rock surface, 6) correct ages for changes in relative 

http://ice-tea.org/


elevation through time, and estimate 7) average and 8) continuous rates of ice margin retreat 

or thinning. Three of the tools (1, 5 and 6) perform exposure age calculations, which are 

based on the framework of CRONUScalc. Results are available as printed text, tables and/or 

raster (.png) and vector (.eps) graphics files, depending on the tool. These tools are intended 

to enable users to evaluate complex exposure histories, assess the reliability of exposure ages, 

explore potential age corrections, and better analyse and understand spatial and temporal 

patterns within their data. 
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1. Introduction 

Over the last few decades cosmogenic-nuclide surface-exposure dating has become the 

principal approach for reconstructing past glacier and ice sheet geometries (Balco, 2011; Ivy-

Ochs and Briner, 2014). Such research has greatly improved our understanding of global and 

regional patterns of ice mass expansion and contraction (e.g. Hughes et al., 2016; Solomina et 

al., 2015), centennial-scale climate events (e.g. Schaefer et al., 2009), topographic controls on 

ice dynamics (e.g. Jones et al., 2015), and contributions of ice masses to past changes in 

global mean sea level (e.g. Alley et al., 2005). Despite considerable advances in the 

technique, the full potential of cosmogenic-nuclide datasets is often hindered by geologic 

scatter, an inadequate assessment of uncertainties and/or limited user expertise in computer 

coding for performing analyses. 



Surface-exposure dating exploits the accumulation of nuclides in the Earth’s surface 

resulting from interactions with cosmic radiation to determine the time at which a rock was 

exposed following deglaciation (Gosse and Phillips, 2001). The exposure history can be 

deciphered from analysis of both the nuclide concentrations and the corresponding surface-

exposure ages in a number of ways. The pattern of burial and exposure over glacial-

interglacial cycles can be gauged by evaluating the ratio between two different nuclides (e.g. 

Bierman et al., 1999; Lal, 1991; Schaefer et al., 2016). The reliability of an age for a glacial 

landform can be assessed with statistical tests such as reduced chi-squared and outlier 

analysis of the exposure age dataset (e.g. Balco, 2011; Rinterknecht et al., 2006; Wendt and 

Carl, 1991). Potential effects from cover of the rock surface or changes in the relative 

elevation of the rock surface can be accounted for and tested (e.g. Cuzzone et al., 2016; 

Schildgen et al., 2005). Rates of ice surface lowering and ice margin retreat can also be 

estimated by quantifying the relationship between the location and exposure age of samples 

within a dataset (e.g. Briner et al., 2009; Johnson et al., 2014). While the development of 

online exposure age calculators (CRONUS-Earth, Balco et al., 2008; CRONUScalc, Marrero 

et al., 2016; CREp, Martin et al., 2017) have helped facilitate the rapid growth of the 

application, there is currently no common platform for quantitatively evaluating exposure age 

datasets in the ways described above. 

Here we describe iceTEA – Tools for Exposure Ages – a suite of online tools for plotting 

and analysing cosmogenic-nuclide surface-exposure data that are used to constrain former ice 

margins. The paper outlines the systematics of iceTEA, the basis, set up and user-inputs for 

each of the tools, and it also highlights potential benefits of applying the tools to surface-

exposure datasets.  

 



2. Description of the numerical tools 

2.1 Systematics 

The tools of iceTEA are outlined in Table 1. They can be used via an online interface 

(http://ice-tea.org), but are also available as MATLAB© code with an easy-to-use front-end 

script for each tool (see supplementary material). While the online version performs all 

primary analysis and plotting functionality for each tool, the code provides the user with 

greater flexibility to apply the tools for specific needs and also includes some additional 

options (e.g. selecting specific samples within the dataset to be analysed). 

Table 1. Tools of iceTEA 

Tool MATLAB© front-end script Online stages 

1. Calculate ages * Calc_Plot_age.m 

Inputs 

Results 

Plot Settings 

Plot Results 

2. Plot ages Import_Plot_age.m 
Inputs 

Plot Results 

3. Remove outliers 
Calc_Plot_age.m 
Import_Plot_age.m 

Inputs 

Results 

Plot Settings 

Plot Results 

4. Plot isotope concentrations Plot_concs.m 
Inputs 

Plot Results 

5. Correct for surface cover * Cover_correct_ages.m 

Inputs 

Results 

Plot Settings 

Plot Results 

6. Correct for elevation 
change * 

Elev_correct_ages.m 

Inputs 

Results 

Plot Settings 

Plot Results 

7. Estimate retreat/thinning 
rates – linear approach 

Analyse_linear_rates.m 

Inputs 

Results 

Plot Settings 

Plot Results 

8. Estimate retreat/thinning 
rates – continuous approach 

Analyse_continuous_rates.m 

Inputs 

Results 

Plot Settings 

Plot Results 

* Uses modified version of CRONUScalc calculation framework (Marrero et al., 2016). 
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Each tool is comprised of two to four stages, which include input parameters, results of 

the analysis, plot settings and plotted results (Table 1). iceTEA requires the details of the 

surface-exposure dataset in a Microsoft© Excel© or comma-separated values spreadsheet, or 

in a tab-delimited text file. The following information must be included for each sample: 

sample name; latitude; longitude; elevation; pressure (if known); relative position (if 

relevant); sample thickness; bulk density; shielding factor; 10Be concentration (mean and 

uncertainty, if measured); 26Al concentration (mean and uncertainty, if measured); year 

collected; and for plotting the nuclides on a two-isotope diagram, the sample depth and final 

mineral weight (see Appendix A1). As with previous age calculators (CRONUScalc, Marrero 

et al., 2016; CREp, Martin et al., 2017), the nuclide concentrations should be normalised to 

07KNSTD for 10Be (Nishiizumi et al., 2007) and KNSTD for 26Al (Nishiizumi, 2004) before 

being used with iceTEA (see 

http://hess.ess.washington.edu/math/docs/al_be_v22/al_be_docs.html for details). 

Four tools require exposure ages to be calculated before performing analysis and 

plotting, while three tools involve the calculation of exposure ages. The details of each of 

these tools are described in the sections below. In cases where exposure ages are already 

known (for example, using a different age calculator, perhaps with a local production rate), 

the mean age, internal and/or external uncertainty and provided production rate scaling model 

can be used (see Appendix A1). In cases where exposure ages need to be computed, a 

modified version of the CRONUScalc calculation framework is used (see Marrero et al., 

2016 for details). 

Cosmogenic-nuclide production is computed for spallation, the dominant production 

mechanism at the surface, and for muons, which are important at depth (Gosse and Phillips, 

2001). Three principal scaling models for production by spallation can be used with iceTEA, 

which have been shown to best fit production rate calibration data (Borchers et al., 2016): 1) 

http://hess.ess.washington.edu/math/docs/al_be_v22/al_be_docs.html


‘Lm’, the time-dependent version of Lal (1991), which uses variations in the dipole magnetic 

field intensity (Nishiizumi et al., 1989); 2) ‘LSD’, the time-dependent model of Lifton et al. 

(2014), which includes dipole and non-dipole magnetic field fluctuations and solar 

modulation; and 3) ‘LSDn’, a version of LSD that implements nuclide-specific scaling by 

incorporating cross-sections for the different reactions (Lifton et al., 2014). The MATLAB© 

version of iceTEA has options for other time-independent (St; Stone, 2000) and time-

dependent models (De, Du, Li; Desilets and Zreda, 2003; Dunai, 2000; Lifton et al., 2005). 

The geomagnetic history used in all of the time-dependent scaling models includes the 

CALS3k model for 0-3 ka (Korte and Constable, 2011; Korte et al., 2009), the CALS7k 

model for 3-7 ka (Korte and Constable, 2005), the GLOPIS-75 model for 7-18 ka (Laj et al., 

2004), and the PADM2M model for 18-2000 ka (Ziegler et al., 2011), which is the same as 

used in CRONUScalc. Muon flux is scaled using the energy-dependent model of Lifton et al. 

(2014). All time-dependent scaling models are computed relative to the year that the sample 

was collected, which is a required input for each sample. As the production rate is dependent 

on any shielding of the rock surface (Dunne et al., 1999; Gosse and Phillips, 2001), a 

topographic shielding factor is a required input for each sample; this can be calculated using 

the online calculator described by Balco et al. (2008) (http://stoneage.ice-

d.org/math/v3/skyline_in.html), or by using the supplemental tool Topographic_shielding.m, 

which is available in the MATLAB© version of iceTEA. Nuclide production is numerically 

integrated for both time, using the selected scaling model, and the depth of the sample, based 

on the given sample thickness (see Marrero et al., 2016). The implementation of 

CRONUScalc within iceTEA is further described and discussed in Sections 2.2, 2.6 and 2.7. 

 

http://stoneage.ice-d.org/math/v3/skyline_in.html
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2.2 Calculate ages 

iceTEA provides the capability to compute and plot surface-exposure ages. The primary 

purpose of the ‘Calculate ages’ tool (no. 1) is to compare the calculated ages with those ages 

generated using correction tools (e.g. correcting for surface cover (Section 2.6) and elevation 

change (Section 2.7)), as well as to ages derived from other calculation frameworks (e.g. the 

online calculator formerly known as CRONUS-Earth (Balco et al., 2008), CREp (Martin et 

al., 2017) and CRONUScalc (Marrero et al., 2016)). While the age calculations in iceTEA are 

based on the CRONUScalc framework, exposure ages calculated using this tool may produce 

slightly different results from CRONUScalc for a number of reasons. Firstly, atmospheric 

pressure is calculated based on the location of each sample if it is not input by the user. The 

ERA-40 atmospheric model (Uppala et al., 2005) is used to derive pressure, as with CREp 

and CRONUScalc, however, an elevation-pressure relationship (Radok et al., 1996) is instead 

used if the sample is from Antarctica (<-60 °S) (Balco et al., 2008; Stone, 2000). Secondly, 

exposures ages are calculated here assuming zero nuclide inheritance, zero surface erosion, 

and the top depth of a sample is assumed to be the surface (zero depth). Thirdly, the effective 

attenuation length cannot be manually set, and is instead calculated dependent on the location 

of the sample (Sato et al., 2008); this is the same method used by CRONUScalc when the 

attenuation length field is missing. Fourthly, uncertainty is only calculated here based on the 

elevation and measurement errors, as well as those inherent in the production rate estimates. 

The exclusion of additional uncertainties (e.g. associated with the bulk density, sample 

thickness, shielding factor, attenuation length, and erosion rate) reduces computation time 

relative to CRONUScalc by approximately a factor of four (based on tests using the St and 

LSD scaling models). 

Surface-exposure ages are computed using the provided input data (Section 2.1), and the 

outputs can then be plotted based on the user’s plotting preferences. The age distributions are 



plotted as kernel density estimates, and age population statistics are calculated if the dataset is 

defined as being from a single feature (described in Section 2.3). When using the MATLAB© 

version, the production rate through time can also be output and plotted. 

 

2.3 Plot ages 

The user may wish to plot and evaluate an exposure age dataset that was independently 

generated using a different calculation program (or previously generated with iceTEA). This 

tool (no. 2) allows exposure ages to be imported (as specified in Appendix A1) and then 

plotted. 

A useful initial approach for evaluating a population of exposure ages is to look at the 

age distribution of the dataset. Ages are plotted using this tool as kernel density estimates, 

which are estimates for the probability density function. Details of this method are discussed 

in Lowell (1995), however, the version here corrects for the effect in which measurements 

with the same relative precision have shorter kernel heights – appearing less important – as 

they get older. The probability distributions are normalised by the expected kernel heights, 

which are calculated as a function of age, assuming that all measurements have the same 

relative uncertainty (Balco, 2018). Exposure ages are normally distributed around the mean 

value, and the type of uncertainty adopted depends on the dataset. External uncertainties 

(associated with both the measurement and production rate) are used to calculate the age 

distributions, unless the dataset is identified as being from a single ‘feature’ (e.g. a moraine), 

when the internal uncertainties (measurement only) are instead used; for such datasets, 

uncertainty introduced due to differences in production rate between samples is typically 

negligible. Individual age distributions are plotted with the summed age distribution of the 

dataset. 



Exposure ages from a feature should ideally represent a single age population. Statistics 

describing the age distribution of the dataset are calculated when ‘feature’ is set by the user. 

These include the modal age based on the summed age distribution, the weighted mean and 

standard deviation, and the reduced chi-squared. The weighted mean (�̅�) and weighted 

standard deviation (�̅�) of the dataset are calculated as: 

�̅� = ∑ (
1/𝑣𝑖

∑ 1/𝑣𝑖𝑖
)𝑖 𝑥𝑖           (1) 

and 

�̅� = √∑ (
1/𝑣𝑖

∑ 1/𝑣𝑖𝑖
)𝑖 (𝑥𝑖 − �̅�)2         (2) 

where 𝑣𝑖 is a sample’s analytical age uncertainty and 𝑥𝑖 is a sample’s mean age. If preferred, 

it is possible to alternatively calculate the arithmetic (unweighted) mean and standard 

deviation (MATLAB© version only). The reduced chi-squared (𝜒𝑅
2) – often referred to as the 

mean square of the weighted deviations (MSWD) in some areas of geochronology (e.g. 

Wendt and Carl, 1991) – is a measure of the goodness of fit between the weighted mean and 

the set of exposure ages. It is calculated as follows: 

𝜒𝑅
2 =

1

𝑛−1
∑

(𝑥𝑖−�̅�)2

𝑣𝑖
2

𝑛
𝑖=1           (3) 

where the degrees of freedom is one less than the number of samples (𝑛). A 𝜒𝑅
2 value of 

approximately 1 signifies that the scatter in the dataset can be explained by the measurement 

uncertainty of the individual samples alone, producing a univariate normal distribution where 

the weighted mean and uncertainty appropriately represent the data. The measurement 

uncertainties may have been overestimated if the value is significantly less than 1. For values 

larger than 1, the observed scatter of the data exceeds that predicted by the age uncertainties, 

indicating an additional source for variance in the data, most likely from geomorphic factors. 



To test whether the data represent a single feature, a reduced chi-squared value should fall 

within a 2σ envelope (95% confidence), determined by the criterion 𝜅: 

𝜅 = 1 + 2√
2

𝑛−1
          (4) 

which depends on the degrees of freedom and, therefore, the number of samples (Spencer et 

al., 2017; Wendt and Carl, 1991). If 𝜒𝑅
2 < 𝜅 then there is a >95% probability that the data 

represent a single population and it is therefore appropriate to use the weighted mean as an 

age estimate for the feature (Spencer et al., 2017). A thorough evaluation of a dataset from a 

single feature should also attempt to identify outliers, which uses different statistical methods 

(see Section 2.4). 

For spatially-variable datasets where samples have been collected at a range of locations 

relative to an ice margin, it is informative to show exposure ages as a function of their sample 

position. If the dataset is identified by the user as a ‘transect’, then exposure ages are 

additionally plotted as either a vertical or horizontal transect. The relative position is used 

from the input data (Appendix A1), which should be in metres for a vertical transect and km 

for a horizontal transect. If there are no relative position values entered for samples from a 

vertical transect, then the elevation (in metres above sea level) is used. 

A series of plotting options are available. The user can set the time axis limits (lower and 

upper) in thousands of years before present (ka), and position axis limits (lower and upper) in 

metres or km depending on the type of relative position data (applies only to the transect 

plot). In the MATLAB© version, particular samples within the dataset can be selected to plot 

(the default is to plot all samples given in the input data). 

 



2.4 Remove outliers 

Glacial chronologies often have a degree of scatter where samples do not provide 

matching exposure ages. For glacial features, such as moraines or bedrock landforms, a suite 

of samples is typically collected to provide an accurate age constraint. While the shape of a 

summed probability distribution can be used to indicate potential outliers – a single discrete 

peak implies all ages with uncertainties are consistent with each other, more than one discrete 

peak implies no single consistent age population, and a peak with a shoulder peak on one of 

its limbs implies something in between – it is partially subjective. To more robustly identify 

whether a dataset represents a single age population or a dominant age population and an 

outlier, statistical outlier tests like the Chauvenet's criterion (e.g. Rinterknecht et al., 2006) 

and Grubbs’ Test (e.g. Putnam et al., 2010), and assessments of dataset skewness (Applegate 

et al., 2010) have been applied. 

In this tool (no. 3) we use a two-tailed generalised extreme Studentized deviate (gESD) 

test to statistically identify whether there are any outliers within the dataset (Rosner, 1983). 

Similar to the Grubbs’ Test (Grubbs, 1969), it assumes that the data can be approximated by a 

normal distribution, and is performed iteratively using the difference between the sample’s 

mean exposure age and the most extreme data considering the standard deviation. Unlike the 

Grubbs’ Test, the gESD test does not assume a single outlier, and instead uses an upper 

bound for the number of possible outliers (𝑟). The outliers are calculated from a sequence of 

separate tests (1 outlier, 2 outliers, ..., 𝑟 outliers): 

𝑅𝑖 =
|𝑥(𝑖)−�̅�(𝑖)|

𝑠(𝑖)            (5) 

where 𝑅𝑖 is Rosner’s test statistic representing the extreme Studentized deviates from 

successively reduced samples, 𝑥(𝑖) is the observation with the greatest distance from the 



mean of the dataset, and �̅�(𝑖) and 𝑠(𝑖) are the mean and standard deviation of the dataset with 

the most extreme observations removed. Critical values (𝜆𝑖) for 𝑅𝑖 are calculated as: 

𝜆𝑖 =
𝑡𝑝,𝑛−𝑖−1(𝑛−𝑖)

√(𝑛−𝑖−1+𝑡𝑝,𝑛−𝑖−1)(𝑛−𝑖+1)
                   (6) 

where 𝑛 is the number of observations, 𝑡𝑝 is the Student’s t-distribution for the quantile of 

significance level 𝛼 (the default is 0.05; 5% probability of incorrectly rejecting the null 

hypothesis that there are no outliers), and 𝑛 − 𝑖 − 1 determines the degrees of freedom. 

The number of outliers is determined by finding the iteration with the most successively 

reduced samples (the largest 𝑖). If 𝑅𝑖 > 𝜆𝑖 then the 𝑖 most extreme values are outliers. We set 

the maximum number of outliers (𝑟) as 𝑛 − 1; by assuming a high number of possible 

outliers, we avoid additional outliers influencing the value of the test statistic. The method is 

most accurate for datasets with at least 15 samples, and particularly >25 samples (Rosner, 

1983). Datasets with fewer samples require there to be much fewer outliers for accurate 

detection. For example, at the most extreme, no more than a single outlier could be reliably 

identified from a dataset of only 3 samples. 

The outlier identification and removal tool is featured differently in the online and 

MATLAB© versions of iceTEA. The tool is included within the age calculation and plotting 

tools (Sections 2.2 and 2.3) in the MATLAB© version (Table 1). On the web interface it is a 

separate tool, requiring sample exposure ages to be calculated and included in the input 

sample data (Appendix A1). By using the tool, it is assumed that the data come from a single 

feature (e.g. a moraine or bedrock landform), and that there should be a consistent age 

population for that feature. If a dataset contains multiple features, then the analysis must be 

performed separately for each feature, with the input data organised accordingly. For a more 

thorough assessment of a dataset, the significance level for determining outliers (𝛼) can be 



optionally set to 0.01 (default is 0.05), which would instead generate results with a 1% 

probability of incorrectly rejecting the null hypothesis that there are no outliers. Once the 

outliers have been identified and removed, the reduced dataset of the feature is plotted as a 

kernel density plot with the corresponding modal age, weighted mean and standard deviation, 

and reduced chi-squared statistic (as in Section 2.3). The removed outliers can optionally be 

plotted as grey kernel density estimates. If no outliers are detected then this plot will contain 

all original ages within the dataset. The user can optionally set the time axis limits (lower and 

upper) of the plot in thousands of years before present (ka), and specify which samples to plot 

(MATLAB© version only). 

 

2.5 Plot isotope concentrations 

Multiple nuclides (most commonly 10Be and 26Al) are often measured in a sample to 

better understand the exposure and burial history (Lal, 1991), and can be particularly useful 

in burial dating and for identifying cosmogenic inheritance in a sample (e.g. Fabel and 

Harbor, 1999; Granger, 2006). The ‘Plot isotope concentrations’ tool (no. 4) enables 

measured nuclide concentrations to be plotted on a two-isotope diagram and optionally as a 

depth profile, using the information provided in the input data. It should be noted that the 

required data are slightly different from that needed for the other tools (see Section 2.1 and 

Appendix A1). The tool is currently only available for 10Be and 26Al data. 

The purpose of a two-isotope diagram is to compare measured nuclide concentrations 

with those concentrations that should be expected from simple pathways of exposure and 

burial (Figure 1). The concentration of a nuclide (𝑁𝑘) during exposure differs between 

isotopes, owing to nuclide-specific production and decay: 



𝑁𝑘 =
𝑃𝑘

𝜆𝑘+
𝜌𝜀

Λ

(1 − 𝑒𝑥𝑝 [− (𝜆𝑘 +
𝜌𝜀

Λ
)] 𝑡𝑒)       (7) 

where 𝑃𝑘 is the nuclide’s production rate (atoms g-1 a-1), 𝜆𝑘 is the nuclide’s decay constant 

(a), 𝜌 is rock density (g cm-3), 𝜀 is the surface erosion rate (cm a-1), Λ is the attenuation length 

(g cm-2), and 𝑡𝑒 is the exposure time (a). For a continuously exposed rock surface, the 

concentration of 10Be increases until it reaches secular equilibrium, while the ratio of 26Al to 

10Be decreases as the lower half-life of 26Al causes it reach secular equilibrium sooner (top 

curve in Figure 1). A rock surface can experience different concentration pathways despite 

continuous exposure as a result of subaerial erosion. A second, lower curve is determined by 

calculating nuclide saturation from continuous exposure and a multitude of erosion rates. A 

steady-state erosion island (Lal, 1991) – referred to here as the “simple exposure region” – 

represents the area within which a continuously exposed surface can exist (Figure 1). 

Following exposure, when a surface becomes buried and protected from cosmic rays, the 

concentration of 26Al decays more quickly than that of 10Be; the 26Al/10Be ratio decreases in 

line with radioactive decay. Exposure and burial isochrones, representing concentrations of 

equal exposure (𝑡𝑒) and burial (𝑡𝑏) time (a), are plotted on the diagram and calculated with: 

𝑁𝑘 =
𝑃𝑘

𝜆𝑘+
𝜌

Λ

(1 − 𝑒𝑥𝑝 [− (𝜆𝑘 +
𝜌

Λ
)] 𝑡𝑒)  𝑒𝑥𝑝 [− (𝜆𝑘 +

𝜌

Λ
)] 𝑡𝑏     (8) 

where it is assumed that the surface is buried at an infinite depth, with zero production, 

following initial continuous exposure rather than steady-state erosion. The diagram (Figure 1) 

assumes that a sample has primarily experienced spallogenic production, at or near to the 

surface, rather than muonic production at greater depths. In situations where a sample 

underwent significantly more production at depth (i.e. below ~5 m) than at the surface – for 

fast-eroding settings and/or deep cores – the ratio between 26Al and 10Be would be greater 



(e.g. Akçar et al., 2017; Granger and Smith, 2000) and the sample would appear further up 

the diagram (Fig. 1). 

 

 

Fig. 1. A two-isotope diagram for normalised 10Be and 26Al concentrations. During continuous 

exposure, the 10Be concentration increases until it becomes saturated and is at secular equilibrium 

(upper black line). Meanwhile, the 26Al/10Be ratio decreases. Surfaces that are continuously exposed 

but that undergo different degrees of constant erosion follow diverging trajectories until saturation is 

reached (lower black line). Any rock surfaces with measured concentrations that fall between these 

lines – the simple exposure region – are assumed to have been continuously exposed with a “simple” 

exposure history. Concentrations that plot above these lines (in the grey area) are either not feasible 

and imply issues with the geochemistry or measurement of a sample, imply that a sample was once 

exposed at a higher elevation (larger production rate) and then transported to a lower elevation, or 

indicate that a sample underwent production for a substantially long period at depth (larger 26Al/10Be 

production ratio) before arriving at the surface. Concentrations that plot below the simple exposure 

region indicate that the sampled surface has been buried with a “complex” exposure history. 

Isochrones highlight points of equal exposure time (purple dashed lines) and burial time (orange dot-

dashed lines). 

 



To allow for comparing samples from multiple sites, it is necessary to normalise nuclide 

concentrations. A depth-integrated local present-day production rate of each sample is 

calculated and averaged by the mineral weight, while the mean density and attenuation length 

of the samples are used to compute the exposure and burial isochrones and lines of 

continuous exposure. As the nuclide concentrations are normalised by the nuclide’s 

production rate, 𝑃𝑘 in Equations 7 and 8 becomes equal to 1. 

The plot can also be produced for nuclide concentrations from core samples, where some 

samples may have been combined for a nuclide measurement. An example is where, at a 

particular depth range, two samples were independently measured for 10Be but were 

combined for 26Al measurement (e.g. Schaefer et al., 2016). Based on the sample input data 

(see Section 2.1 and Appendix A1), data are automatically sorted by finding common depths 

between nuclide measurements and then combining the normalised concentration means (�̂�𝑐) 

and uncertainties (𝜎�̂�𝑐) for the depth range: 

�̂�𝑐 =
∑ (�̂�𝑠 ∑ 𝑤𝑠)𝑐

∑ (∑ 𝑤𝑠)𝑐
          (9) 

and 

𝜎�̂�𝑐 = √(
∑ (�̂�𝑠 ∑ 𝑤𝑠)𝑐

∑ (∑ 𝑤𝑠)𝑐
)

2

                       (10) 

where �̂�𝑠 is the normalised sample concentration (with the unit being years, as the 

concentration is normalised by the production rate) and 𝑤𝑠 is the weight of each sample (g). 

The two-isotope diagram uses a logarithmic axis for the normalised 10Be concentration 

(Nishiizumi et al., 1991) as 1) it reduces clustering of samples, particularly for low 10Be 

concentrations, and 2) radioactive decay lines and corresponding burial isochrones are near-

straight, allowing for simpler interpretation of data with respect to time. Sample 



concentrations are plotted with uncertainty ellipses and a point mean. The ellipses can be 

shown for either 1 or 2 σ (68% or 95% confidence). The user can also optionally set the 

26Al/10Be ratio and 10Be concentration axes limits (lower and upper) and, in the MATLAB© 

version, set the exposure and burial isochrones (in ka) to plot. 

Depth profiles can be particularly useful for evaluating nuclide production in soils and 

bedrock (e.g. Balco and Rovey, 2008; Schaefer et al., 2016). This tool provides the option to 

additionally plot sample concentrations (in atoms g-1) as a function of depth (m), where a box 

represents the depth range and the concentration uncertainty of each sample, and a line 

represents the mean concentration for that sample. The depth and concentration axes limits 

(lower and upper) can be optionally set when producing this plot using the MATLAB© 

version. 

 

2.6 Correct for surface cover 

Cosmogenic nuclide production in rock decreases with depth below the surface as 

cosmic radiation is attenuated. The same process occurs in material overlying the rock 

surface – dependent on the thickness and density of that material – which can shield the rock 

surface from cosmic rays and therefore reduce nuclide production (Gosse and Phillips, 2001). 

The effects of shielding from surface cover are commonly ignored or considered negligible, 

but feasible depths of >16 g cm-2 reduce nuclide production by >10%. Two main approaches 

can be taken if a study region is suspected to have had some surface cover (e.g. snowpack, 

soil, loess, till, ash, water): 1) a specific sampling strategy to minimise the effects of possible 

surface cover – for example, only the top surfaces of large boulders could be sampled, 

assuming that these would not have been covered or that any material was quickly windswept 

(e.g. Balco, 2011; Ivy-Ochs et al., 1999); or 2) the influence of surface cover on collected 



rock samples could be evaluated by calculating surface cover shielding factors and resulting 

exposure ages (e.g. Benson et al., 2004; Schildgen et al., 2005). 

Here we provide a tool (no. 5) that calculates exposure ages with a correction for material 

covering the rock surface. The total time-averaged surface shielding factor (𝑆𝑆) is calculated 

from: 

𝑆𝑆 = 𝑆𝑇 𝑒𝑥𝑝 (−
𝑧𝑐𝑜𝑣𝑒𝑟 𝜌𝑐𝑜𝑣𝑒𝑟

 Λ𝑠
)                   (11) 

where 𝑆𝑇 is the shielding factor from topography (Dunne et al., 1999), and where shielding 

from surface cover is determined from the average depth of surface cover (𝑧𝑐𝑜𝑣𝑒𝑟, in cm), the 

average density of that cover (𝜌𝑐𝑜𝑣𝑒𝑟, in g cm-3) and the effective attenuation length (Λ𝑠, in g 

cm-2). The topographic shielding factor is taken from the sample input data (see Section 2.1), 

while the attenuation length is determined from the sample location (see Section 2.2). A value 

for cover depth is required, as well as either a preset cover type (Table 2) or a manually 

specified density for the surface cover. Exposure ages are then calculated as described in 

Marrero et al. (2016) and Section 2.2. 

Table 2. Preset cover material options and the 

corresponding density (𝜌𝑐𝑜𝑣𝑒𝑟) used for surface 
cover corrections. A user-specified density for 
surface cover can alternatively be used. 

Cover material Density (g cm-3) 

Ash 0.7 
Loess 1.6 
Snow 0.27 
Soil 1.3 a 
Till 1.8 
Fresh water 0.999 b 
Sea water 1.027 c 

a Average of dry mineral soil (~1–1.6 g cm-3); note, a 
value for wet soil will be higher. 
b Near-surface water (1.1 bars) at 10 °C. 
c Near-surface water (1.1 bars) at 10 °C with salinity 
of 35 g kg-1. 

 



The cover shielding factor computed in this tool is a simplified approach to be used to 

test the effects from long-term averages of surface cover, as it assumes that surface cover was 

of constant depth for the entire period of interest. In reality, snow cover at a site likely varied 

through time with seasonal fluctuations, water levels could have varied periodically or 

lowered progressively, and till, soil, loess and ash-type deposits may have gradually deflated 

over time. In locations where snow cover was likely prevalent, there are methods available 

that use seasonal changes in snow-depth (Gosse and Phillips, 2001), or an energy balance 

model to account for temporal and spatial variability of snow shielding (Schildgen et al., 

2005). Ideally, corrected exposure ages should use a time-dependent shielding factor, 

however this requires estimates of the cover depth (and density) through time, which is rarely 

possible to approximate. It should also be noted that a more complex mass-shielding 

approach is possibly required to accurately account for production from thermal neutron 

capture (Delunel et al., 2014; Dunai et al., 2014; Zweck et al., 2013) and for variations in 

cover density with depth (Jonas et al., 2009). 

Results are provided following computation of the shielding factor and corresponding 

exposure ages for the specified production scaling method. These results include the surface 

cover and total shielding factors, and the corrected surface-exposure ages (mean and standard 

deviation). The corrected age distributions are plotted as kernel density estimates (described 

in Section 2.3). 

 

2.7 Correct for elevation change 

Cosmogenic nuclide production is dependent on atmospheric pressure, with greater 

production occurring at higher altitudes where the pressure is lower (Gosse and Phillips, 

2001; Lal, 1991). An accurate estimate of the atmospheric pressure during exposure is, 



therefore, necessary for the calculation of an exposure age. Typically, it is assumed that the 

elevation of a sampled surface relative to sea level – the reference point for scaling 

atmospheric pressure – has either not varied over time or that any effect of elevation change 

is negligible. However, while atmospheric pressure at present-day sea level was likely similar 

to today in the past (Mélières et al., 1991), we know from models of glacial isostatic 

adjustment (GIA) (e.g. Peltier et al., 2015) that vertical deformation of the land varied over 

time in response to changing volumes of ice masses. Where a surface-exposure dating site is 

located next to the coast, a relative sea-level curve has previously been used to estimate 

relative changes in elevation since ice retreated from that region (e.g. Goehring et al., 2012; 

Rinterknecht et al., 2006; Young et al., 2013). Away from the coast and relative sea-level 

sites, it is not possible to accurately extrapolate any recorded elevation changes, largely 

because the local ice loading history and resulting glacial isostatic response vary in space (cf. 

Whitehouse, 2018). In such cases, GIA models can be used to derive exposure ages that are 

corrected for isostatic change (e.g. Cuzzone et al., 2016; Suganuma et al., 2014; Ullman et 

al., 2016). Tectonically-driven elevation change will also have an effect on nuclide 

production (Dunai, 2010; Riihimaki and Libarkin, 2007). Rock samples that have been 

exposed over long timescales, or that are from areas of rapid uplift/subsidence, may therefore 

also require correction of local production rates and resulting exposure ages (e.g. Brook et al., 

1995; Dunai et al., 2005; Schaefer et al., 1999). 

In this tool (no. 6), exposure ages are calculated with corrections for changes in elevation 

– derived from either a GIA model or a linear rate (uplift or subsidence) – through time. The 

time-varying (𝑡) elevation relative to sea level (𝐸) is determined from: 

𝐸𝑚(𝑡) =  𝑒𝑝𝑟𝑒𝑠,𝑚 + 𝑒𝑑𝑖𝑓𝑓,𝑚(𝑡)                  (12) 



where 𝑒𝑝𝑟𝑒𝑠,𝑚 is the present-day elevation (m asl) of a sample (𝑚), and 𝑒𝑑𝑖𝑓𝑓,𝑚(𝑡) is the 

elevation (metres) of a sample relative to 𝑒𝑝𝑟𝑒𝑠,𝑚 at time 𝑡. For a given rate (m ka-1), 

𝑒𝑑𝑖𝑓𝑓,𝑚(𝑡) is computed back to 8160 ka before present (approx. 6 times the half-life of 10Be) 

in 100-year intervals. Using a GIA-derived correction, 𝑒𝑑𝑖𝑓𝑓,𝑚(𝑡) is the past isostatic 

elevation change, interpolated from model output at 100-year intervals. 𝐸𝑚(𝑡) is then 

converted to atmospheric pressure, dependent on its location (see Section 2.2). The total 

nuclide production is calculated based on the corrected atmospheric pressure (𝑝): 

𝑃𝑡𝑜𝑡𝑎𝑙,𝑘(𝑡) = 𝑆𝑒𝑙,𝜁(𝑝, 𝑅𝑐, 𝑡) 𝑆𝑆 𝑃𝑟𝑒𝑓,𝑠,𝜁,𝑘 𝑒𝑥𝑝 (
−𝑧

Λ𝑠
) + 𝑆𝑆 𝑃𝜇(𝑝, 𝑅𝑐, 𝑧)              (13) 

where 𝑆𝑒𝑙,𝜁  is the time-dependent elevation-latitude scaling factor for a particular scaling 

model (𝜁), 𝑆𝑆 is the shielding factor from terrain and surface cover (see Section 2.6), 𝑃𝑟𝑒𝑓,𝑠,𝜁 

is the reference spallogenic (𝑠) production rate (atom g-1 a-1) at present-day sea-level high-

latitude (where 𝑝 = 1013.25) for nuclide 𝑘, Λ𝑠 is the effective attenuation length (g cm-2), 𝑧 

is the depth (g cm-2), and 𝑃𝜇 is the production rate (atom g-1 a-1) at 𝑧 due to muons (𝜇), which 

is a function of pressure, depth and the cutoff rigidity (𝑅𝑐). Applying a GIA-based correction 

to the primary 10Be calibration sites of Borchers et al. (2016) increases the time- and site-

averaged production rate by just 0.17% (based on the ICE-6G ice model and LSD scaling 

model), well within the uncertainty of the measurements and calculation (Jones et al., in 

review). The reason for only a minor correction is largely because the sites were far enough 

away from the centres of past major glacial isostatic change. For long-term subsidence or 

uplift, it can be assumed that effects were region-specific and did not influence production at 

the calibration sites. We therefore use the uncorrected spallogenic production rate of 

Borchers et al. (2016) for calculating exposure ages that are corrected for changes in relative 

elevation. 



Determination of the time-dependent relative elevation of a sample (𝑒𝑑𝑖𝑓𝑓,𝑚(𝑡)) requires 

particular inputs based on whether the GIA model or linear rate approach is used. For the 

linear rate method, a rate of elevation change (m ka-1) is required to generate an elevation 

history. A positive rate (e.g. 2 m ka-1) would correspond to lower elevations in the past, 

uplifting towards present, and a negative rate would correspond to higher elevations in the 

past, subsiding towards present. For the GIA-based method, either the ICE-5G (Peltier, 2004) 

or ICE-6G (Peltier et al., 2015) ice model can be selected, which are the only global ice 

models currently freely available. Most ice masses are included in these models (Antarctica, 

Greenland, Laurentide, Cordilleran, Fennoscandian, British-Irish, Patagonian, New Zealand, 

and Iceland), but the relatively minor effects from ice in the Himalayas, European Alps, 

Caucasus and Andes do not feature. There are some differences between the ice models, 

particularly in North America, but ICE-6G is considered to be more accurate as it is 

constrained by modern GPS-measured uplift rates in addition to ice extent and relative sea-

level records. The original ice model data was also produced for different timescales, with 

ICE-5G ice history defined from 122 ka to present, but ICE-6G from just 26 ka. Prior to these 

times, the elevation difference for the oldest model time step is used and, therefore, corrected 

exposure ages older than 122 ka or 26 ka should not be interpreted.  

In addition to defining the ice-load history, the rheological properties of the Earth must 

be prescribed within the GIA model. A three-layer approximation of the VM2 Earth model 

(5G reference) is used in our calculations. The VM2 Earth model was developed in 

conjunction with the ICE-5G ice model, while the ICE-6G ice model was developed in 

parallel with the VM5a Earth model (6G reference). VM5a is simply a multi-layer fit to 

VM2, so our 3-layer approximation is appropriate for use with both ice models. Having 

defined both the ice model and the Earth model, the time-dependent elevation relative to 

present can be calculated. The spatial resolution of the GIA model output used within iceTEA 



is 1 geographic degree, meaning that a greater spatial variability of isostatic effects is 

captured towards the poles. The GIA model accounts for shoreline migration, rotational 

feedbacks, and the gravitational attraction of ice masses (Milne and Mitrovica, 1998; 

Whitehouse, 2018). If the sample elevation is below sea level for any particular period of 

time, then it is assumed that no nuclide production occurs. 

Results are provided following computation of the time-dependent elevation and 

corresponding exposure ages for the specified production scaling method. These results 

include the corrected surface-exposure ages (mean and standard deviation) and the mean 

offsets from the uncorrected ages (in years and as a percentage), which are exported as an 

Excel© spreadsheet or text file. The corrected age distributions are plotted as kernel density 

estimates (described in Section 2.3), and the local production rates used are plotted as a 

function of time. The age axes of the plots, as well as the production rate axis, can be 

optionally set (lower limit and upper limit). 

 

2.8 Estimate retreat/thinning rate – linear approach 

Surface-exposure dating is sometimes applied in transects to constrain spatial changes of 

the ice margin through time (e.g. Briner et al., 2009; Cuzzone et al., 2016; Johnson et al., 

2014; Lane et al., 2014; Small et al., 2018). Linear rates of deglaciation can then be estimated 

by either calculating the distance and age offset between dated positions, or by performing 

regression analysis for a suite of exposure ages that vary approximately linearly with their 

position. The latter approach has been used to derive average rates and corresponding 

durations of rapid ice surface lowering in Antarctica (Johnson et al., 2014; Jones et al., 2015; 

Small et al., accepted), and is adopted here (tool no. 7). 



Ice margin retreat or thinning rate estimates are computed for datasets that form either a 

horizontal or vertical transect, respectively. The positions of the samples relative to the ice 

margin (in km for horizontal transects and metres for vertical transects) are used as the 

independent variable in the analysis. Least-squares regression is applied randomly to 

normally-distributed exposure ages (at 2 σ) through a Monte Carlo simulation; while 5000 is 

the default number of iterations, this value can be optionally specified. Linear least-squares 

regression predicts the exposure age (𝑦𝑖) for each sample position regressor (𝑞𝑖): 

𝑦𝑖 = 𝛽0 + 𝛽1𝑞𝑖            (14) 

where 𝛽1 is the Pearson correlation coefficient of the observed mean exposure ages and 

sample positions, multiplied by the standard deviation of the mean ages divided by the 

standard deviation of the positions, and 𝛽0 is the mean of the observed ages minus the mean 

of the observed sample positions multiplied by 𝛽1. 

The approach assumes that 1) the exposure ages accurately represent the timing of ice 

margin retreat or ice surface lowering at each position, without any post-depositional 

processes or cosmogenic inheritance significantly affecting the ages, and 2) retreat/thinning 

was approximately continuous over the time period. Rates are estimated from the distribution 

of feasible, positive-sloping linear regressions. The uncertainty of the estimate is generally 

reflective of the number and scatter of exposures ages contributing to each transect, together 

with their respective uncertainties. Uncertainties in the horizontal/vertical positions of 

samples are not included in the calculations. 

Linear estimates can be computed using either unweighted or weighted regression, where 

the weighting is derived from the analytical uncertainty of each sample (see Equations 1 and 

2). While the weighted method should be used if some of the exposure ages have large 

uncertainties relative to others in the dataset, the unweighted method should be used if 



outliers within the data are suspected, particularly if those potential outliers have relatively 

small uncertainties. 

The computed linear rates are produced as a probability distribution, with estimates at 

68% and 95% confidence bounds. Estimated rates are plotted as a histogram, highlighting the 

modal and median rate, and as a transect, showing all modelled linear regressions for the 

exposure ages as a function of sample position. For the latter plot, the user can specify 

whether to show the exposure ages, and can optionally set the time and relative position axes 

(lower and upper limits) in thousands of years before present and in metres or km, 

respectively. In the MATLAB© version, the samples to be analysed within the dataset can 

also be specified (the default is to analyse all samples). 

 

2.9 Estimate retreat/thinning rates – continuous approach 

A surface-exposure dataset may record a variable rate of ice retreat or thinning during 

deglaciation (e.g. Lane et al., 2014; Spector et al., 2017). In this case an average rate derived 

from a linear regression model (Section 2.8) will not adequately capture the ice margin or ice 

surface elevation changes implied by the data. Alternatively, the continuous evolution of such 

changes can be modelled to derive rate estimates, enabling the magnitude and timing of rate 

changes to be identified and datasets from different locations to be compared (e.g. Cahill et 

al., 2015). 

Here we provide a tool (no. 8) that estimates rates of retreat or thinning by fitting a 

continuous time-dependent function of ice position with respect to time. The relative position 

(distance from ice margin or elevation above the modern ice surface) is modelled using 

Fourier Series analysis: 



𝑓(𝑡) = 𝑎0 + ∑ 𝑎𝑖
𝑛
𝑖=1 cos(𝑤𝑡𝑖) + 𝑏𝑖 sin(𝑤𝑡𝑖)                 (15) 

where 𝑓(𝑡) is the true relative sample position under the assumptions of the fitted model, 𝑡 is 

the mean age of the mean sample position, 𝑎𝑖 and 𝑏𝑖 are coefficients for the cosine and sine 

forms, 𝑤 is the frequency of the signal, and 𝑖 is the number of terms in the series. The latter 

of these parameters can be optionally modified to manually improve the fit of the model to 

the data (values are accepted between 1 and 8; default is 3); the higher the number of terms 

(𝑖), the more sinusoidal the fit. While potentially useful, this is a simple approach that 1) uses 

only the mean exposure age and position values, 2) may assume that the exposure ages can 

record retreat/thinning and advance/thickening, and 3) requires the user to decide which 

model (determined by the number of terms) best fits the data. 

The MATLAB© version of iceTEA includes an additional, more robust statistical 

approach, designed for surface-exposure data. In this case, the relative position is modelled 

using Bayesian penalized spline regression: 

𝑓(𝑡𝑖) = ∑ 𝑏𝑘
𝐾
𝑘=1 (𝑡)𝛼𝑘          (16) 

where 𝑡𝑖 is the age of the sample position and 𝑓(𝑡𝑖) is the true relative position under the 

assumptions of the fitted model, 𝛼𝑘 refers to spline coefficient 𝑘 and 𝑏𝑘 is the 𝑘𝑡ℎ B-spline 

evaluated at age 𝑡, for 𝑘 = 1, … , 𝐾. Cubic B-splines (e.g. Eilers and Marx, 2010) were used 

and the first order differences of the spline coefficients were penalized to ensure smoothness 

of the fitted curve. As surface-exposure dating assumes continuous deglaciation without 

readvance or re-thickening, a further constraint was imposed on the coefficients so that the 

spline-modelled positions decreased over time. The model was fitted within a Bayesian 

framework using JAGS (just another Gibbs sampler; Plummer, 2003) to provide estimates of 

𝑓(𝑡𝑖) with uncertainties, which were incorporated through an errors-in-variables framework 

(Cahill et al., 2015; Dey et al., 2000). For a vertical transect, both temporal (exposure age) 



and spatial (elevation) uncertainties are included, while just the exposure age uncertainty is 

used for a horizontal transect. 

Computed time-dependent estimates are produced for the median, and 68% and 95% 

confidence bounds. The fitted age-position profile is plotted together with the rates of change 

as a function of time, and the minimum and maximum median rates are identified and 

highlighted. The user can specify whether to show the exposure ages, and can optionally set 

the time, relative position and rate of change axes (lower and upper limits) in thousands of 

years before present, in metres or km, and in cm yr-1 or m yr-1, respectively. In the 

MATLAB© version, the samples to be analysed within the dataset can be specified (the 

default is to analyse all samples), and the number of Monte Carlo iterations within the 

Bayesian framework can be set (the default is 20,000). 

 

3. Example applications and outputs 

The iceTEA tools can be used for most 10Be and 26Al surface-exposure datasets that are 

used to constrain former ice margins, but the choice of tool depends on the context of the 

dataset. Each of the tools plot nuclide concentrations, exposure ages, and/or results of an 

analysis, which are available for download using the online interface or can be automatically 

saved using the MATLAB© code, in both raster-based Portable Network Graphics (.png) and 

vector-based Encapsulated Postscript (.eps) formats. This section highlights potential 

applications for each of the tools and provides overviews for the graphical outputs of iceTEA. 

The duration and nature of past ice cover can be apparent from nuclide concentrations 

alone, without the need for calculating corresponding exposure ages. Rock samples that have 

paired 10Be and 26Al measurements can be evaluated with the ‘Plot isotope concentrations’ 



tool (no. 4) (Figure 2). Measured nuclide concentrations that plot within the simple exposure 

region likely record continuous exposure since first exposed, while concentrations that plot 

below this area indicate that the sample underwent at least one period of burial since first 

exposed. In Figure 2A, the measured concentrations from a Greenland bedrock core 

(Schaefer et al., 2016) – corresponding to core segments at 0.22-0.99 m and 1.02-1.29 m 

(Figure 2B) – imply at least ~25-50 ka of exposure and ~700-1600 ka of burial. Such 

applications can help reveal the relative duration of past ice cover and whether the landscape 

was covered by cold-based, non-erosive ice (e.g. Briner et al., 2006), but can also be 

combined with numerical modelling approaches to identify potential glacial/interglacial 

scenarios (e.g. Schaefer et al., 2016). 

 

 

Fig. 2. Nuclide concentrations plotted A) on a two-isotope diagram (at 1 and 2 sigma), and B) as a 

function of depth (at 1 sigma). These are examples produced by the tool ‘Plot two-isotope 

concentrations’, which reproduce previously published plots of 10Be (red) and 26Al (blue) nuclide 

concentrations that were measured in a bedrock core (Schaefer et al., 2016). In this case, those core 

segments that were combined for nuclide measurement are automatically detected based on common 

sample depths (linked with a vertical line through the means in B) in order to produce the equivalent 

10Be and 26Al nuclide concentrations that are shown in A. It is unlikely that samples would be 



combined for surface rock samples, and therefore each sample would be plotted on the two-isotope 

diagram separately. 

 

Most of the plotting and analysis tools are for use with surface-exposure ages. The 

overall distribution of ages within a dataset can be visualised with a kernel density plot, using 

either the ‘Calculate ages’ or ‘Plot ages’ tool (no. 1 and 2, respectively). For a 

geographically-distributed dataset (e.g. sequence of moraines, isolated bedrock features or 

glacial deposits), temporal patterns in the chronology such as those across a region of New 

Zealand can be identified (Figure 3A). It should be noted, however, that such an application 

would have to assume that none of the exposure ages were biased by post-depositional 

disturbance or inheritance of nuclides from prior exposure, making an apparent age younger 

or older respectively. For datasets from a vertical or horizontal transect, patterns of ice 

surface lowering or ice margin retreat can be interpreted from a plot of the relative positions 

against exposure ages (Figure 3B). 

The ‘Remove outliers’ tool (no. 3) is for diagnosing exposure ages within a dataset 

derived from a single glacial feature. In an example from a moraine in southern Patagonia 

(Figure 4A), 14 exposure ages produce a consistent mean and modal age for the feature. 

However, the spread of ages within the dataset result in a large reduced chi-squared value that 

is greater than the chi-squared criterion, therefore implying that the mean and standard 

deviation should not be used to represent the age population (at 95% confidence). Applied to 

this example, four exposure ages are identified as outliers and are removed from the dataset 

(Figure 4B). This results in a much tighter cluster of ages and a decreased reduced chi-

squared that is indicative of a single age population (at 95% confidence). Based on both the 

reduced chi-squared test and gESD outliers test, a weighted mean and standard deviation of 



14.22 ± 0.5 ka can be used as the age for this moraine. Ideally, a reason for an outlier should 

be established whenever one or more are identified – for example, evidence that the sample 

has experienced surface erosion or post-depositional movement. Outlier removal approaches 

rely on the assumption that geomorphic processes do not influence each sample equally. If 

such effects did occur equally – for example, potentially from surface erosion if the samples 

are of the same lithology and approximately the same age – then the mean ages would shift 

but the scatter of ages within the dataset would not be significant. 

 

 

Fig. 3. Exposure ages plotted as A) kernel density estimates for samples from a sequence of moraines 

(Ohau II-VI, Lake Ohau, New Zealand; Putnam et al., 2013), and B) a vertical transect recording ice 

sheet surface lowering (Mt Suess and Low Ridge, Mackay Glacier, Antarctica; Jones et al., 2015). 

These are examples of the plotted outputs from the tools ‘Calculate ages’ and ‘Plot ages’, which are 

able to highlight temporal and spatial patterns within datasets. 

 



 

Fig. 4. Exposure ages from a moraine plotted as kernel density estimates A) for the initial raw dataset, 

and B) following the removal of outliers. The example dataset is from Torres del Paine, southern 

Patagonia (TDPIII, n=14; García et al., 2012). Using the ‘Calculate ages’ or ‘Plot ages’ tool, the 

probability distribution of each sample is plotted in light red and the summed distribution of the 

dataset is plotted as a bold red line. Additionally, the mode (black dashed line), weighted mean (black 

solid line) and weighted standard deviation (SD; black dotted lines) of the dataset are shown, and the 

reduced chi-squared (𝜒𝑅
2) and associated criterion (𝜅) are calculated; if 𝜒𝑅

2 < 𝜅 then there is a >95 % 

probability that the data represent a single population (d.f. is degrees of freedom). Four outliers were 

identified (plotted in grey) and removed in this example using a generalised extreme Studentized 

deviate (gESD) test with the ‘Remove outliers’ tool. 

 

Two of the iceTEA tools (no. 7 and 8) estimate rates of deglaciation from a transect of 

exposure ages. Average rates of retreat or thinning can be computed using the linear model 



(no. 7) (Figure 5). This approach is best applied when the position-age relationship of a 

dataset implies an approximately constant rate of retreat or thinning. In cases where all ages 

within a transect have overlapping uncertainties, instantaneous retreat or thinning is feasible, 

but the median and range of rates from the regression analysis provide a more probable 

estimate based on the age uncertainties (Figure 5D). Transects of exposure ages that imply a 

variable rate (e.g. periods of both gradual and rapid retreat/thinning) are less suited to this 

tool, and should instead be used with the Fourier or spline based models (tool no. 8) to 

compute continuous rates. In Figure 6, modelled surface lowering profiles are plotted for a 

vertical transect, as well as the corresponding rates of thinning for the period covered by the 

dataset, for both model approaches. The quality of the fit may vary between approaches, 

dependent on dataset. In this example, the Fourier Series analysis (number of terms = 3) 

indicates that the minimum rate of ice surface lowering was equal to or less than 0 cm yr-1 at 

multiple times, with a maximum median lowering rate of 14.7 cm yr-1 at 7.3 ka. Using the 

spline-based approach provides an improved fit, indicating that ice surface lowering was 

slowest at 10.7 ka, but then accelerated to a maximum median rate of 15.1 cm yr-1 at 8.1 ka 

before becoming more gradual after ~6 ka. Irrespective of the approach used to estimate 

deglaciation rates, the effects from potential outliers within a dataset should be investigated. 

 



 

Fig. 5. Example outputs from estimating average deglaciation rates using the linear model. A) The 

individual linear regressions (grey lines) and the 95% confidence bounds (dashed black lines) are 

shown for a Monte Carlo (MC) least-squares (LS) linear regression analysis on a horizontal transect 

of exposure ages. The example data is from the ‘Sweden’ transect of Cuzzone et al. (2016) and 

references therein (using the weighted mean ages from individual sites). B) A histogram showing the 

corresponding distribution of retreat rates produced by each iteration of the linear regression analysis. 

C) and D) are the same as A and B, but for a vertical transect of exposure ages from Mackay Glacier, 

Antarctica (Jones et al., 2015). 

 



 

Fig. 6. Example output from estimating continuous deglaciation rates using the A) Fourier and B) 

spline models. The upper panel is the modelled profile for an example vertical transect (Scott and 

Reedy Glaciers, Antarctica; Spector et al., 2017). The mean exposure ages are also plotted, with 

rectangles representing the age and elevation uncertainties used in the spline-based regression. The 

lower panel is the corresponding rate of change. Maximum and minimum rates, and their respective 

timings, are also computed. 

 

Two iceTEA tools (no. 5 and 6) perform age corrections for a dataset. The ‘Correct for 

surface cover’ tool (no. 5) can be used for testing the sensitivity of an exposure age dataset if 

past cover of rock surfaces is suspected. Figure 7 highlights that the shielding provided by 

surface cover causes the resulting exposure ages to become older. This effect is greater for a 

higher density cover material, such as till relative to snow, and for thicker cover, for example 

50 cm relative to 20 cm (Figure 7). While this approach is useful for examining the effects of 

shielding by surface cover, the true exposure ages will always be uncertain unless the cover 

depth and density are confidently known for the full exposure history. 

The ‘Correct for elevation change’ tool (no. 6) can be used to understand the potential 

exposure age effects from either a long-term approximately constant rate of tectonic rock 

uplift/subsidence or GIA changes over the last glacial-interglacial cycle. Tectonic impacts 



will unsurprisingly be largest at sites near to a plate boundary, such as in the Himalaya. 

Effects from GIA are both spatially and temporally variable (Jones et al., in review). Broadly, 

corrected exposure ages will become older if they are derived from a region of significant 

deglaciation (e.g. Norway in Figure 8) due to glacial isostatic depression at the time of initial 

exposure, can become younger if located at an isostatically elevated, subsiding ‘peripheral 

bulge’ region beyond an ice sheet margin (e.g. north-eastern USA in Figure 8), or could be 

relatively unchanged if they are from a region of negligible surface elevation change (e.g. 

England in Figure 8). The period during which samples have been exposed will also have an 

effect – for example, a sample that becomes exposed early in the deglaciation (e.g. at 20 ka) 

will have potentially experienced greater isostatic elevation change than samples initially 

exposed in the Holocene. While applying these corrections should provide more accurate 

exposure ages – particularly for regions with large elevation changes – these ages are 

dependent on the GIA model, including uncertainties associated with both the quantification 

of ice sheet change and Earth rheology, or linear estimate of elevation change. At any 

particular location, the reliability of the correction also depends on the degree of past 

atmospheric pressure change in that region (Staiger et al., 2007). This tool will be improved 

in the future as these effects are better understood and quantified. 

 

 



Fig. 7. Effects on exposure ages from example scenarios of material covering sampled rock surfaces. 

The raw, uncorrected exposure ages are shown as kernel density estimates in light red with the 

summed density estimate of the dataset as a dark red line. The green curves represent the summed 

density estimates for varying degrees of shielding by overlying materials (individual age distributions 

are not shown for clarity), calculated using the ‘Correct for surface cover’ tool. The dot-dashed curve 

is cover by 50 cm of snow (assumed density of 0.27 g cm-3), the dashed curve is cover by 20 cm of till 

(assumed density of 1.8 g cm-3), and dotted curve is cover by 50 cm of till. The greater the thickness 

and density of cover material, the larger the age correction. 

 

 

Fig. 8. Effects from GIA. A) The elevation of a sample site relative to present since first exposed, and 

B) the corresponding change in the site-specific production rate through time. The dashed line 

assumes no change in GIA, while the solid line is corrected for GIA effects. The orange site is in a 

region of substantial glacial isostatic uplift (central Norway), the green site was previously 

isostatically elevated at a ‘peripheral bulge’ (north-eastern USA), and the purple site is from a region 

of minor past surface elevation change (central England). The examples were generated using the 

ICE-6G ice model and LSD nuclide scaling model. The high-frequency production rate variability 

during the last ~12 ka is from changes in the solar output; the scaling model uses an average value 

prior to this time as any variability is undefined (Lifton et al., 2014). 

 



4. Conclusions 

iceTEA is an online and MATLAB© based suite of tools for plotting and analysing 

cosmogenic-nuclide surface-exposure data from former glacier and ice sheet margins. The 

tools allow complex exposure histories to be evaluated using a two-isotope diagram, patterns 

within exposure age datasets to be identified from kernel density estimate and transect plots, 

the reliability of exposure ages to be examined with reduced chi-squared and outlier removal 

tests, linear and continuous rates of retreat or thinning to be estimated, and effects from cover 

of rock surfaces and time-varying changes in relative elevation to be investigated and 

corrected ages to be calculated. This paper is not intended to be prescriptive in the approaches 

taken to analysing exposure ages. Our aim is that these tools will allow workers to explore 

the spatial and temporal patterns in their data in a consistent and inter-comparable way, and 

also to initiate discussion of further improvements in the application and analysis of surface-

exposure data.  

There is also potential for future iceTEA development. Currently these tools can only be 

used for 10Be and 26Al concentrations and exposure ages, but we intend to expand the code so 

that it can be used with 3He, 14C, 21Ne and 36Cl data. The age calculation framework will also 

be updated following any important revisions of the existing geomagnetic databases, 

production rates and scaling models. It is also hoped that production rates which have been 

corrected for both time-varying relative elevation and atmospheric pressure changes will be 

included in the future. We welcome suggestions for additional plotting or analysis tools. 

 

 

 



Appendix 1. Required sample input data 

There are two forms of input data required, which can be in a Microsoft© Excel© (.xlsx) 

or comma-separated values (.csv) spreadsheet, or in a tab-delimited text file (.txt) without 

column headings. The standard type of input data is used for all plotting and analysis tools 

apart from ‘Plot isotope concentrations’, with 15 required columns plus an optional 7 

columns (22 in total) for importing previously calculated exposure ages. For the ‘Plot isotope 

concentrations’ tool, 17 columns of sample data are required. Templates called 

‘input_data_template.xlsx’ and ‘input_data_template_complex.xlsx’ for the two input types, 

respectively, can be found in the supplementary data, within the compiled MATLAB© code 

and on the iceTEA website. Templates for example datasets are also available. It is possible 

with the ‘Plot isotope concentrations’ tool to sort and plot bedrock core data where some 

sections may have been combined for nuclide measurement. In such cases, data should be 

entered with each row representing a separate nuclide measurement (see 

‘GISP2_input_complex.xlsx’). 

 

Appendix 2. Overview of the iceTEA online interface. 

The home page of iceTEA features links to each of the individual tool interfaces (Figure 

A1), while a ‘Documentation’ page provides information on iceTEA, including the 

MATLAB© code and descriptions of the necessary input data formats. On selecting the 

desired tool, the user will be taken to an interface (e.g. Figure A2). This will include a series 

of stages specific to each tool (Table 1), including Inputs, Results, Plot Settings and Plot 

Results. The user can advance through the stages by selecting ‘Next’, and will be warned if 

necessary information is missing. In the initial data input stage, sample data in a correctly 

formatted input file (Appendix A1) should be uploaded and the tool parameters should be 



specified. Any results (e.g. calculated ages, corrections, retreat/thinning rate estimates) will 

be displayed in the Results stage. Plots will be shown in the final stage, which can be 

downloaded as both raster-based .png and vector-based .eps files. 

 

 

Fig. A1. Home page of iceTEA, which features links to each of the tool interfaces. 

 

 

Fig. A2. An example tool interface. The user can progress through each of the stages (e.g. Inputs to 

Results to Plot Settings to Plot Results), using the ‘Next’ button.  
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